Every New Russian wants to give his children all the best. The best education,
in particular. For example, Kolyan has asked the math teacher to teach his son
to solve not only quadratic equations, but also cubic ones, and quaternary ones,
and altogether all the equations there are. The teacher knows that equations of
degrees higher than five cannot be solved in radicals in the general form. But to
solve equations up to the fifth degree is also very hard. It is better to check solutions using a computer. Here your help is needed.
Input
The first line contains the degree of a polynomial N (1 ≤ N ≤ 5). In the next N + 1 lines there are integers (-100 ≤ ai ≤ 100, a0 ≠ 0). The i+2nd line contains the ith coefficient of the polynomial a0xn + a1xn–1 + … + an.
Output
Output all real roots of the polynomial taking into account their multiplicity. The
roots must be given in the ascending order. The accuracy must be not less than 10–6.
Sample
Problem Author: Den Raskovalov
Problem Source: Quarter-Final of XXXI ACM ICPC - Yekaterinburg - 2006