|
|
вернуться в форумThis problem involves number theory??? This problem involves number theory??? Re: This problem involves number theory??? Послано mon 4 апр 2002 11:37 > This problem involves number theory??? yes, you can refer to chapter 33 of Introduction to Algorithms, MIT Press, there covers enough knowledge you need to solve the problem. suppose d is multiplicative inverse of e, modulo (p - 1)(q - 1), where p * q = n then the answer should be c^d (mod n) Could you tell me where I can find this book? Послано Tony 10 июл 2003 17:29 > > This problem involves number theory??? > > yes, you can refer to chapter 33 of Introduction to Algorithms, > MIT Press, there covers enough knowledge you need to solve the > problem. > > suppose d is multiplicative inverse of e, modulo (p - 1)(q - 1), > where p * q = n > > then the answer should be c^d (mod n) Re: This problem involves number theory??? Послано Yu Xin 10 мар 2006 20:12 Thanks! Re: This problem involves number theory??? Но ведь ответ не всегда верен! Контрпример: e=3 n=15 (p=3,q=5) c=3 GCD(e,(p-1)(q-1))=GCD(3,8)=1 e<(p-1)(q-1) e*d=1 modulo (2*4) => d=3 m=c^d (modulo n)=3^3 mod (15)=(15+12) modulo (15)=12 (modulo 15) != 3 modulo (15)=c modulo (15) Проблема возникает в случае GCD(c,n)>1 (p or q (if pq then c=0 mod (n))). Автор забыл упомянуть, что GCD(c,n)=1 или мне повезло с АС? Edited by author 17.08.2016 14:41 |
|
|