| 
 | 
back to boardnew solution!!! H(i+1)-H(i)=H(i)-H(i-1)+2;   denote d(i)=H(i+1)-H(i)   you can get: d(i)=d(i-1)+2;   H(N)-H(1)=(N-1)d(1)+(N-1)(N-2);   H(i)-H(1)=(N-1)d(i)+(i-1)(i-2);   according to the above two equation, denote H(i)=0   you will get:H(N)=(N-i)*((N-1)-H1/(i-1));   the maximun of H(N) is the answer .so strange!   Edited by author 08.03.2009 15:00   Edited by author 08.03.2009 15:00  |  
  | 
|