new solution!!!
H(i+1)-H(i)=H(i)-H(i-1)+2;
denote d(i)=H(i+1)-H(i)
you can get: d(i)=d(i-1)+2;
H(N)-H(1)=(N-1)d(1)+(N-1)(N-2);
H(i)-H(1)=(N-1)d(i)+(i-1)(i-2);
according to the above two equation, denote H(i)=0
you will get:H(N)=(N-i)*((N-1)-H1/(i-1));
the maximun of H(N) is the answer .so strange!
Edited by author 08.03.2009 15:00
Edited by author 08.03.2009 15:00