|
|
back to boardnew solution!!! H(i+1)-H(i)=H(i)-H(i-1)+2; denote d(i)=H(i+1)-H(i) you can get: d(i)=d(i-1)+2; H(N)-H(1)=(N-1)d(1)+(N-1)(N-2); H(i)-H(1)=(N-1)d(i)+(i-1)(i-2); according to the above two equation, denote H(i)=0 you will get:H(N)=(N-i)*((N-1)-H1/(i-1)); the maximun of H(N) is the answer .so strange! Edited by author 08.03.2009 15:00 Edited by author 08.03.2009 15:00 |
|
|