ENG  RUSTimus Online Judge
Online Judge
Задачи
Авторы
Соревнования
О системе
Часто задаваемые вопросы
Новости сайта
Форум
Ссылки
Архив задач
Отправить на проверку
Состояние проверки
Руководство
Регистрация
Исправить данные
Рейтинг авторов
Текущее соревнование
Расписание
Прошедшие соревнования
Правила
вернуться в форум

Обсуждение задачи 1407. Раз-два, раз-два

Please, help!!!
The biggest integer, that I find is 11111212122112, but I do not find any sequense or algo, what can I do???

Edited by author 09.01.2007 00:55
Re: Please, help!!!
Послано KIRILL(ArcSTU) 9 янв 2007 00:57
86 digits left for solution
Use long arithmetics
Re: Please, help!!!
Послано it4.kp 9 янв 2007 01:55
why 86?

my solution has 98 digits.

BTW, does anyone know what is the shortest answer?
Re: Please, help!!!
My helpprogram work very long... %(((

Edited by author 09.01.2007 08:43
Re: Please, help!!!
Послано Burunduk1 9 янв 2007 08:47
It's very easy to constract answer with length N... (induction)
Re: Please, help!!!
Послано KIRILL(ArcSTU) 9 янв 2007 11:41
Burunduk1 писал(a) 9 января 2007 08:47
It's very easy to constract answer with length N... (induction)

You mean that it can be solved without long numbers?
I can not find nothing better than divide number on 2^N
on every step
Reccurence!
Послано svr 11 янв 2007 22:57
Let H[N]- number under considaration.
Let we define integer K[N]=H[N]/(2^N);
Then K[N+1]=(m*(5^(N-1))+K[N-1])/2; where m=1 or 2;
and K[1]=1;
We solve this reccurence in long arithmetics.
In my module was bad long dividing, thank to this problem
that bug removed now.
Who can explain, how can I find the number, wich devide on 2^100???
Послано [SSAU_#617]snipious_#0 aka Pimenov Sergey Nikolaevich 29 янв 2007 18:44
I find 2^100 and than add 2^100 until all digits will be 1 and 2... My programm worked 2 hours, but didn't give me the answer!!!
Re: Who can explain, how can I find the number, wich devide on 2^100???
Am I right???
Re: Who can explain, how can I find the number, wich devide on 2^100???
Послано Nikolaev Maxim 6 фев 2007 18:06
Some number is divisible on 2^n if number which has been written down in his last n digits is divisible on 2^n.

Means we can consistently select digits in the answer.